headgraphic
loader graphic

Loading content ...

Sound Speed Variability over Bay of Bengal from Argo Observations (2011-2020)

Jana, S., A. Gangopadhyay, P.J. Haley, Jr., and P.F.J. Lermusiaux, 2022. Sound Speed Variability over Bay of Bengal from Argo Observations (2011-2020). In: OCEANS 2022 Chennai, February 21-24, 2022, pp. 1-8. doi:10.1109/OCEANSChennai45887.2022.9775509

In this paper, we study the spatio-temporal variability of the sound speed in the Bay of Bengal (BoB) estimated from the Argo observation data during 2011-2020. We perform domain-wide and region specific analysis of the sound speed structure and identify the regions and times of higher variabilities. The domain-wide spatio-temporal variability in the sound speed is maximum in the thermocline layers near 110 m depth. This variability is smaller at around 35-40m depth but increases in the surface layers. The regions of higher temporal and spatial variability vary with depth and time. In the surface layers, the variability is large in the northern part of the Bay but in the subsurface and the layers underneath, it is large along the entire western boundary from the north to south. Due to the combined impact of temperature inversion and the positive salinity gradient, the northern BoB experiences a significant positive vertical gradient in sound speed above the sonic layer depth (SLD) during the postmonsoon and winter periods. This gradient supports strong surface ducting and formation of the shadow zone below the SLD.

Share

Plastic Pollution in the Coastal Oceans: Characterization and Modeling

Lermusiaux, P.F.J., M. Doshi, C.S. Kulkarni, A. Gupta, P.J. Haley, Jr., C. Mirabito, F. Trotta, S.J. Levang, G.R. Flierl, J. Marshall, T. Peacock, and C. Noble, 2019. Plastic Pollution in the Coastal Oceans: Characterization and Modeling. In: OCEANS '19 MTS/IEEE Seattle, 27-31 October 2019, doi: 10.23919/OCEANS40490.2019.8962786

To cleanup marine plastics, accurate modeling is needed. We outline and illustrate a new partial-differential-equation methodology for characterizing and modeling plastic transports in time and space (4D), showcasing results for Massachusetts Bay. We couple our primitive equation model for ocean dynamics with our composition based advection for Lagrangian transport. We show that the ocean physics predictions have skill by comparison with synoptic data. We predict the fate of plastics originating from four sources: rivers, beach and nearshore, local Bay, and remote offshore. We analyze the transport patterns and the regions where plastics accumulate, comparing results with and without plastic settling. Simulations agree with existing debris and plastics data. They also show new results: (i) Currents set-up by wind events strongly affect floating plastics. Winds can for example prevent Merrimack outflows reaching the Bay; (ii) There is significant chaotic stirring between nearshore and offshore floating plastics as explained by ridges of Lagrangian Coherent Structures (LCSs); (iii) With 4D plastic motions and settling, plastics from the Merrimack and nearshore regions can settle to the seabed before offshore advection; (iv) Internal waves and tides can bring plastics downward and out of main currents, leading to settling to the deep bottom. (v) Attractive LCSs ridges are frequent in the northern Cape Cod Bay, west of the South Shore, and southern Stellwagen Bank. They lead to plastic accumulation and sinking along thin subduction zones.

Share

Real-Time Sediment Plume Modeling in the Southern California Bight

Kulkarni, C.S., P.J. Haley, Jr., P.F.J. Lermusiaux, A. Dutt, A. Gupta, C. Mirabito, D.N. Subramani, S. Jana, W.H. Ali, T. Peacock, C.M. Royo, A. Rzeznik, and R. Supekar, 2018. Real-Time Sediment Plume Modeling in the Southern California Bight. In: Oceans '18 MTS/IEEE Charleston, 22-25 October 2018. doi:10.1109/oceans.2018.8653642

With advances in engineering and technology, mining the deep sea for untapped rare metal resources from the bottom of the ocean has recently become economically viable. However, extracting these metal ores from the seabed creates plumes of fine particles that are deposited at various depths within the ocean, and these may be extremely harmful to the marine ecosystems and its components. Thus, for sustainable management, it is of utmost importance to carefully monitor and predict the impact of such harmful activities including plume dispersion on the marine environment. To forecast the plume dispersion in real-time, data-driven ocean modeling has to be coupled with accurate, efficient, and rigorous sediment plume transport computations. The goal of the present paper is to demonstrate the real-time applications of our coupled 3D-and-time data-driven ocean modeling and plume transport forecasting system. Here, the region of focus is the southern California bight, where the PLUMEX 2018 deep sea mining real-time sea experiment was recently conducted (23 Feb – 5 Mar, 2018). Specifically, we demonstrate the improved capabilities of the multiscale MSEAS primitive equation ocean modeling system to capture the complex oceanic phenomenon in the region of interest, the application of the novel method of composition to efficiently and accurately compute the transport of sediment plumes in 3D+1 domains, and the portability of our software and prediction system to different operational regions and its potential in estimating the environmental impacts of deep sea mining activities, ultimately aiding sustainable management and science-based regulations.
Share

Environmental Ocean and Plume Modeling for Deep Sea Mining in the Bismarck Sea.

Coulin, J., P. J. Haley, Jr., S. Jana, C.S. Kulkarni, P. F. J. Lermusiaux, T. Peacock, 2017. Environmental Ocean and Plume Modeling for Deep Sea Mining in the Bismarck Sea. In: Oceans '17 MTS/IEEE Anchorage, 1-10, 18-21 September 2017.

A pressing environmental question facing the ocean is the potential impact of possible deep-sea mining activities. This work presents our initial results in developing an ocean and plume modeling system for the Bismark Sea where deep sea mining operations will probably take place. We employ the MSEAS modeling system to both simulate the ocean and to downscale initial conditions from a global system (HYCOM) and tidal forcing from the global TPXO-8 Atlas. We found that at least 1.5 km resolution was needed to adequately resolve the multiscale flow fields. In St. Georges channel, the interaction between the tides, background currents, and underlying density fields increased the subtidal flows. Comparing to historical transport estimates, we showed that tidal forcing is needed to maintain the correct subtidal transport through that Channel. Comparisons with past simulations and measured currents all showed good agreement between the MSEAS hindcasts. Quantitative comparisons made between our hindcasts and independent synoptic ARGO profiles showed that the hindcasts beat persistence by 33% to 50%. These comparisons demonstrated that the MSEAS current estimates were useful for assessing plume advection. Our Lagrangian transport and coherence analyses indicate that the specific location and time of the releases can have a big impact on their dispersal. Our results suggest that ocean mining plumes can be best mitigated by managing releases in accord with such ocean modeling and Lagrangian transport forecasts. Real-time integrated mining-modeling-sampling is likely to provide the most effective mitigation strategies.
Share

Issues and Progress in the Prediction of Ocean Submesoscale Features and Internal Waves

Duda T.F., W.G. Zhang, K.R. Helfrich, A.E. Newhall, Y.-T. Lin, J.F. Lynch, P.F.J. Lermusiaux, P.J. Haley Jr., J. Wilkin, 2014. Issues and Progress in the Prediction of Ocean Submesoscale Features and Internal Waves. OCEANS'14 MTS/IEEE.

Data-constrained dynamical ocean modeling for the purpose of detailed forecasting and prediction continues to evolve and improve in quality. Modeling methods and computational capabilities have each improved. The result is that mesoscale phenomena can be modeled with skill, given sufficient data. However, many submesoscale features are less well modeled and remain largely unpredicted from a deterministic event standpoint, and possibly also from a statistical property standpoint. A multi-institution project is underway with goals of uncovering more of the details of a few submesoscale processes, working toward better predictions of their occurrence and their variability. A further component of our project is application of the new ocean models to ocean acoustic modeling and prediction. This paper focuses on one portion of the ongoing work: Efforts to link nonhydrostatic-physics models of continental-shelf nonlinear internal wave evolution to data-driven regional models. Ocean front-related effects are also touched on.

Share

Many Task Computing for Multidisciplinary Ocean Sciences: Real-Time Uncertainty Prediction and Data Assimilation

Evangelinos, C., P.F.J. Lermusiaux, J. Xu, P.J. Haley, and C.N. Hill, 2009. Many Task Computing for Multidisciplinary Ocean Sciences: Real-Time Uncertainty Prediction and Data Assimilation. Conference on High Performance Networking and Computing, Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers (Portland, OR, 16 November 2009), 10pp. doi.acm.org/10.1145/1646468.1646482.

Error Subspace Statistical Estimation (ESSE), an uncertainty prediction and data assimilation methodology employed for real-time ocean forecasts, is based on a characterization and prediction of the largest uncertainties. This is carried out by evolving an error subspace of variable size. We use an ensemble of stochastic model simulations, initialized based on an estimate of the dominant initial uncertainties, to predict the error subspace of the model fields. The dominant error covariance (generated via an SVD of the ensemble-generated error covariance matrix) is used for data assimilation. The resulting ocean fields are provided as the input to acoustic modeling, allowing for the prediction and study of the spatiotemporal variations in acoustic propagation and their uncertainties. The ESSE procedure is a classic case of Many Task Computing: These codes are managed based on dynamic workflows for the: (i) perturbation of the initial mean state, (ii) subsequent ensemble of stochastic PE model runs, (iii) continuous generation of the covariance matrix, (iv) successive computations of the SVD of the ensemble spread until a convergence criterion is satisfied, and (v) data assimilation. Its ensemble nature makes it a many task data intensive application and its dynamic workflow gives it heterogeneity. Subsequent acoustics propagation modeling involves a very large ensemble of short-in-duration acoustics runs.
Share

Spatial and Temporal Variations in Acoustic propagation during the PLUSNet-07 Exercise in Dabob Bay

Xu, J., P.F.J. Lermusiaux, P.J. Haley Jr., W.G. Leslie and O.G. Logutov, 2008. Spatial and Temporal Variations in Acoustic propagation during the PLUSNet-07 Exercise in Dabob Bay. Acoustical Society of America, Proceedings of Meetings on Acoustics (POMA). 155th Meeting, Vol. 4. 11pp. doi: 10.1121/1.2988093.

We present the spatial and temporal variability of the acoustic field in Dabob Bay during the PLUSNet07 Exercise. The study uses a 4-D data-assimilative numerical ocean model to provide input to an acoustic propagation model. The ocean physics models (primitive-equations and tidal models), with CTD data assimilation, provided ocean predictions in the region. The output ocean forecasts had a 300m and 1-5m resolution in the horizontal and vertical directions, at 3-hour time intervals within a 15-day period. This environmental data, as the input to acoustic modeling, allowed for the prediction and study of the temporal variations of the acoustic field, as well as the varying spatial structures of the field. Using a one-way coupled-normal-mode code, along- and across-sections in the Dabob Bay acoustic field structures at 100, 400, and 900 Hz were forecasted and described twice-daily, for various source depths. Interesting propagation effects, such as acoustic fluctuations with respect to the source depth and frequency as a result of the regional ocean variability, wind forcing, and tidal effects are discussed. The novelty of this work lies in the possibility of accurate acoustic TL prediction in the littoral region by physically coupling the real-time ocean prediction system to real-time acoustic modeling.
Share

Forecasting synoptic transients in the Eastern Ligurian Sea

Robinson, A.R., J. Sellschopp, W.G. Leslie, A. Alvarez, G. Baldasserini, P.J. Haley, P.F.J. Lermusiaux, C.J. Lozano, E. Nacini, R. Onken, R. Stoner, P. Zanasca, 2003. Forecasting synoptic transients in the Eastern Ligurian Sea. In "Rapid Environmental Assessment", Bovio, E., R. Tyce and H. Schmidt (Editors), SACLANTCEN Conference Proceedings Series CP-46, Saclantcen, La Spezia, Italy.

Oceanographic conditions in the Gulf of Procchio, along the northern Elba coast, are influenced by the circulation in the Corsica channel and the southeastern Ligurian Sea. In order to support ocean prediction by nested models, an initial 4-day CTD survey provided initial ocean conditions. The purposes of the forecasts were threefold: i) in support of AUV exercises; ii) as an experiment in the development of rapid environmental assessment (REA) methodology; and, iii) as a rigorous real time test of a distributed ocean ocean prediction system technology. The Harvard Ocean Prediction System (HOPS) was set up around Elba in a very high resolution domain (225 m horizontally) which was two-way nested in a high resolution domain (675 m) in the channel between Italy and Corsica. The HOPS channel domain was physically interfaced with a one-way nest to the CU-POM model run in a larger Ligurian Sea domain. Eleven nowcasts and 2-3 day forecasts were issued during the period 26 September to 10 October, 2000 for the channel domain and for a Procchio Bay operational sub-domain of the Elba domain.

After initialization with the NRV Alliance, CTD survey data adaptive sampling patterns for nightly excursions of the Alliance were designed on the basis of forecasts to obtain data for assimilation which would most efficiently maintain the structures and variability of the flow in future dynamical forecasts. Images of satellite sea surface temperature were regularly processed and used for track planning and also for model verification. Rapid environmental assessment (REA) techniques were used for data processing and transmission from ship to shore and vice versa for model results. ADCP data validated well the flow in the channel. Additionally and importantly, the direction and strength of the flow in Procchio Bay were correctly forecast by dynamics supported only by external observations. CU-POM model hydrographic and geostrophic flow data was assimilated successfully on boundary strips of the HOPS domain. Flow fields with/without CU-POM nesting were qualitatively similar and a quantitative analysis of differences is under study. A significant result was the demonstration of a powerful and efficient distributed ocean observing and prediction system with in situ data collected in the Ligurian Sea, satellite data collected at SACLANTCEN, forecast modeling at Harvard University and the University of Colorado, and adaptive sampling tracks designed at Harvard. The distributed system functioned smoothly and effectively and coped with the adverse six-hour time difference between Massachusetts and Italy.

Share

Real-time Forecasting of the Multidisciplinary Coastal Ocean with the Littoral Ocean Observing and Predicting System (LOOPS)

Robinson, A.R. and the LOOPS Group, 1999. Real-time Forecasting of the Multidisciplinary Coastal Ocean with the Littoral Ocean Observing and Predicting System (LOOPS). Preprint Volume of the Third Conference on Coastal Atmospheric and Oceanic Prediction and Processes, 3-5 November 1999, New Orleans, LA, American Meteorological Society, Boston, MA.

The Littoral Ocean Observing and Predicting System (LOOPS) concept is that of a generic, versatile and portable system, applicable to multidisciplinary, multiscale generic coastal processes. The LOOPS advanced systems concept consists of: a modular, scalable structure for linking, with feedbacks, models, observational networks and data assimilation and adaptive sampling algorithms; and an efficient and robust, integrated and distributed, system software architecture and infrastructure. LOOPS applications include scientific research, coastal zone management and rapid environmental assessment for naval and civilian emergency operations. The LOOPS design is the scientific and technical conceptual basis of an interdisciplinary national littoral laboratory system. The LOOPS partners include: J.G. Bellingham (MBARI), C. Chryssostomidis (MIT), T.D. Dickey (UCSB), E. Levine (NUWC), N. Patrikalakis (MIT), D.L. Porter (JHU/APL), B.J. Rothschild (Umass-Dartmouth), H. Schmidt (MIT), K. Sherman (NMFS), D.V. Holliday (Marconi Aerospace) and D.K. Atwood (Raytheon). LOOPS objectives and accomplishments are summarized in the final section of this note.
Share