headgraphic
loader graphic

Loading content ...

Frontal Dynamics in the Alboran Sea: 2. Processes for Vertical Velocities Development

Garcia-Jove, M., B. Mourre, N.D. Zarokanellos, P.F.J. Lermusiaux, D.L. Rudnick, J. Tintoré, 2022. Frontal Dynamics in the Alboran Sea: 2. Processes for Vertical Velocities Development. Journal of Geophysical Research: Oceans 127(3): e2021JC017428. doi:10.1029/2021JC017428

Significant lateral density gradients occur throughout the year in the Alboran Sea, giving rise to two main fronts: the Western Alboran Gyre Front (WAGF) and Eastern Alboran Gyre Front (EAGF), where large vertical velocities often develop. To improve the understanding of the processes that underlie the development of the vertical velocities in the fronts, the periods of development were analyzed in the perspective of the frontogenesis, instabilities, non-linear Ekman, and filamentogenesis mechanisms, using multi-platform in-situ observations and a high-resolution realistic simulation in spring 2018. The spatio-temporal characteristics of the WAGF indicate a wider, deeper, and longer-lasting front than the EAGF. Additionally, the WAGF shows stronger and deeper upwelling and downwelling regions. The WAGF vertical velocities (up to |55| m/day) are amplified by an across-front ageostrophic secondary circulation generated by: (a) frontal intensification explained by frontogenesis, which shows a sharpening of buoyancy gradients associated with the Atlantic Jet, (b) nonlinear Ekman effects, that are enhanced by the persistent western wind blowing along the frontal direction, and (c) submesoscale instabilities (symmetric and ageostrophic baroclinic instabilities). The EAGF vertical velocities (up to |38| m/day) are amplified by two asymmetrical ageostrophic cells developed across the front with a narrow upwelling region in the middle. The cell’s circulation is explained by frontal intensification produced by filamentogenesis through a cold filament advection to the Mediterranean Sea interior, that is characterized by pointy isopycnals at the center of the filament. This mechanism is observed in both the model and glider observations.

Share

Interactions of Internal Tides with a Heterogeneous and Rotational Ocean

Pan, Y., P.J. Haley, Jr., and P.F.J. Lermusiaux, 2021. Interactions of Internal Tides with a Heterogeneous and Rotational Ocean. Journal of Fluid Mechanics 920, A18. doi:10.1017/jfm.2021.423

We consider the interactions of internal tides (ITs) with a dynamic, rotational, and heterogeneous ocean, and spatially varying topography. The IT fields are expanded using vertical modal basis functions, whose amplitudes vary horizontally and temporally. We obtain the evolution equations of modal amplitudes and energy including simultaneous three-way interactions with the mean flow, buoyancy, and topography. We apply these equations to a set of idealized and two realistic data-assimilative primitive equation simulations. These simulations reveal that significant interactions of ITs with the background fields occur at topographic features and strong currents, in particular when the scales of the background and ITs are similar. In local hot-spots, the new three-way interaction terms when compared to the total modal conversion are found to reach up to 10-30% at steep topography and about 50% in the Gulf Stream. We provide a dimensional analysis to guide the diagnosis of such strong interactions. When IT interactions are with a large-scale barotropic current (without topographic effects), our modal energy equation reduces to the conservation of modal wave action under a WKB consideration. We further derive analytical solutions of the modulation of wavenumber and energy of an IT propagating into a collinear current. For ITs propagating along the flow direction, the wavelength is stretched and the amplitude is reduced, with the degree of modulation determined by |f0|, the ratio of inertial to tidal frequencies. For ITs propagating opposite to the flow direction, a critical value of |f0| exists, below and above which the waves show remarkably different behaviors. The critical opposing current speed which triggers the wave focusing/blocking phenomenon is obtained and its implication on the propagation and dissipation of ITs is discussed.

Share

Coastal Circulation and Water Transport Properties of the Red Sea Project Lagoon

Zhan, P., G. Krokos, S. Langodan, D. Guo, H. Dasari, V.P. Papadopoulos, P.F.J. Lermusiaux, O.M. Knio, and I. Hoteit, 2021. Coastal Circulation and Water Transport Properties of the Red Sea Project Lagoon. Ocean Modelling 161, 101791. doi:10.1016/j.ocemod.2021.101791

The Red Sea Project (RSP) is based on a coastal lagoon with over 90 pristine islands. The project intends to transform the Red Sea coast into a world-class tourist destination. To better understand the regional dynamics and water exchange scenarios in the lagoon, a high-resolution numerical model is implemented. The general and tidal circulation dynamics are then investigated with a particular focus on the response of the lagoon to strong wind jets. Significant variations in winter and summer circulation patterns are identified. The tidal amplitude inside the lagoon is greater than that outside, with strong tidal currents passing over its surrounding coral reef banks. The lagoon rapidly responds to the strong easterly wind jets that occur mainly in winter; it develops a reverse flow at greater depths, and the coastal water elevation is instantly affected. Lagrangian particle simulations are conducted to study the residence time of water in the lagoon. The results suggest that water renewal is slow in winter. Analysis of the Lagrangian coherent structures (LCS) reveals that water renewal is largely linked to the circulation patterns in the lagoon. In winter, the water becomes restricted in the central lagoon with only moderate exchange, whereas in summer, more circulation is observed with a higher degree of interaction between the central lagoon and external water. The results of LCS also highlight the tidal contribution to stirring and mixing while identifying the hotspots of the phenomenon. Our analysis demonstrates an effective approach for studying regional water mixing and connectivity, which could support coastal management in data-limited regions.

Share

Extent of Impact of Deep-Sea Nodule Mining Midwater Plumes Is Influenced by Sediment Loading, Turbulence and Thresholds

Muñoz-Royo, C., T. Peacock, M.H. Alford, J. Smith, A. Le Boyer, C.S. Kulkarni, P.F.J. Lermusiaux, P.J. Haley, Jr., C. Mirabito, D. Wang, E. Eric Adams, R. Ouillon, A. Breugem, B. Decrop, T. Lanckriet, R.B. Supekar, A.J. Rzeznik, A. Gartman, and S.-J. Ju, 2021. Extent of Impact of Deep-Sea Nodule Mining Midwater Plumes Is Influenced by Sediment Loading, Turbulence and Thresholds. Nature Communications Earth & Environment 2(148), pp. 1-16. doi:10.1038/s43247-021-00213-8

Deep-sea polymetallic nodule mining research activity has substantially increased in recent years, but the expected level of environmental impact is still being established. One environmental concern is the discharge of a sediment plume into the midwater column. We performed a dedicated field study using sediment from the Clarion Clipperton Fracture Zone. The plume was monitored and tracked using both established and novel instrumentation, including acoustic and turbulence measurements. Our field studies reveal that modeling can reliably predict the properties of a midwater plume in the vicinity of the discharge and that sediment aggregation effects are not significant. The plume model is used to drive a numerical simulation of a commercial-scale operation in the Clarion Clipperton Fracture Zone. Key takeaways are that the scale of impact of the plume is notably influenced by the values of environmentally acceptable threshold levels, the quantity of discharged sediment, and the turbulent diffusivity in the Clarion Clipperton Fracture Zone.

Share

Energy and Momentum Lost to Wake Eddies and Lee Waves Generated by the North Equatorial Current and Tidal Flows at Peleliu, Palau

Johnston, T.M.S., J.A. MacKinnon, P.L. Colin, P.J. Haley, Jr., P.F.J. Lermusiaux, A.J. Lucas, M.A. Merrifield, S.T. Merrifield, C. Mirabito, J.D. Nash, C.Y. Ou, M. Siegelman, E.J. Terrill, A.F. Waterhouse, 2019. Energy and Momentum Lost to Wake Eddies and Lee Waves Generated by the North Equatorial Current and Tidal Flows at Peleliu, Palau, Oceanography 32(4), 110–125. doi:10.5670/oceanog.2019.417

The North Equatorial Current (NEC) transports water westward around numerous islands and over submarine ridges in the western Pacific. As the currents flow over and around this topography, the central question is: how are momentum and energy in the incident flow transferred to finer scales? At the south point of Peleliu Island, Palau, a combination of strong NEC currents and tides flow over a steep, submarine ridge. Energy cascades suddenly from the NEC via the 1 km scale lee waves and wake eddies to turbulence. These submesoscale wake eddies are observed every tidal cycle, and also in model simulations. As the flow in each eddy recirculates and encounters the incident flow again, the associated front contains interleaving temperature (T) structures with 1–10 m horizontal extent. Turbulent dissipation (ε) exceeds 10-5 W kg-1 along this tilted and strongly sheared front. A train of such submesoscale eddies can be seen at least 50 km downstream. Internal lee waves with 1 km wavelengths are also observed over the submarine ridge. The mean form drag exerted by the waves (i.e., upward transport of eastward momentum) of about 1 Pa is sufficient to substantially reduce the westward NEC, if not for other forcing, and is greater than the turbulent bottom drag of about 0.1 Pa. The effect on the incident flow of the form drag from only one submarine ridge may be similar to the bottom drag along the entire coastline of Palau. The observed ε is also consistent with local dissipation of lee wave energy. The circulation, including lee waves and wake eddies, was simulated by a data-driven primitive equation ocean model. The model estimates of the form drags exerted by pressure drops across the submarine ridge and due to wake eddies were found to be about 10 times higher than the lee wave and turbulent bottom drags. The ridge form drag was correlated to both the tidal flow and winds while the submesoscale wake eddy drag was mainly tidal.

Share

Flow Encountering Abrupt Topography (FLEAT): A Multiscale Observational and Modeling Program to Understand how Topography Affects Flows in the Western North Pacific

Johnston, T.M.S., M.C. Schönau, T. Paluszkiewicz, J.A. MacKinnon, B.K. Arbic, P.L. Colin, M.H. Alford, M. Andres, L. Centurioni, H.C. Graber, K.R. Helfrich, V. Hormann, P.F.J. Lermusiaux, R.C. Musgrave, B.S. Powell, B. Qiu, D.L. Rudnick, H.L. Simmons, L. St. Laurent, E.J. Terrill, D.S. Trossman, G. Voet, H.W. Wijesekera, and K.L. Zeiden, 2019. Flow Encountering Abrupt Topography (FLEAT): A multiscale observational and modeling program to understand how topography affects flows in the western North Pacific. Oceanography 32(4):10–21. doi:​10.5670/oceanog.2019.407

Using a combination of models and observations, the US Office of Naval Research Flow Encountering Abrupt Topography (FLEAT) initiative examines how island chains and submerged ridges affect open ocean current systems, from the hundreds of kilometer scale of large current features to the millimeter scale of turbulence. FLEAT focuses on the western Pacific, mainly on equatorial currents that encounter steep topography near the island nation of Palau. Wake eddies and lee waves as small as 1 km were observed to form as these currents flowed around or over the steep topography. The direction and vertical structure of the incident flow varied over tidal, inertial, seasonal, and interannual timescales, with implications for downstream flow. Models incorporated tides and had grids with resolutions of hundreds of meters to enable predictions of flow transformations as waters encountered and passed around Palau’s islands. In addition to making scientific advances, FLEAT had a positive impact on the local Palauan community by bringing new technology to explore local waters, expanding the country’s scientific infrastructure, maintaining collaborations with Palauan partners, and conducting outreach activities aimed at elementary and high school students, US embassy personnel, and Palauan government officials.

Share

Sensitivity of the Bay of Bengal upper ocean to different winds and river input conditions

Jana, S., A. Gangopadhyay, P.F.J. Lermusiaux, A. Chakraborty, S. Sil, and P.J. Haley Jr., 2018. Sensitivity of the Bay of Bengal Upper Ocean to Different Winds and River Input Conditions. Journal of Marine Systems, 187, 206–222. doi:10.1016/j.jmarsys.2018.08.001

The sensitivity of the Bay of Bengal (BoB) upper ocean circulation and thermohaline structure to varying wind strengths and river salinity conditions is investigated using a set of long-term mesoscale simulations. The Regional Ocean Modeling System (ROMS) simulations differ in their forcing fields for winds (strong vs. weak) and in their representations of river input salinity conditions (seasonally varying estuarine salinity vs. zero salinity). The sensitivities are analyzed in terms of the responses of the surface circulation, thermohaline structure, freshwater plume dispersion, and the coastal upwelling along the western boundary. All the simulations reproduce the main broad-scale features of the Bay, while their magnitudes and variabilities depend on the forcing conditions. The impact of stronger wind is felt at greater depths for temperature than for salinity throughout the domain; however, the impact is realized with vertical distributions that are different in the northern than in the southern Bay.

As expected, the stronger wind-induced enhanced mixing lowers (enhances) the upper ocean temperature (salinity) by 0.2C (0.3 psu), and weakens the near-surface stratification. Moreover, stronger wind enhances eddy activity, strengthens the springtime Western Boundary Current (WBC) and enhances coastal upwelling during spring and summer along the east coast of India. The fresher river input reduces the surface salinity and hence enhances the spreading and intensity of the freshwater plume, stratification, and barrier layer thickness. The lower salinity simulation leads to an eddy-dominant springtime WBC, and enhances the freshness, strength, and southward extent of the autumn East India Coastal Current (EICC). The stronger wind simulations appear to prevent the spreading of the freshwater plume during the summer monsoon due to enhanced mixing. Fresher river input reduces the overall surface salinity by ~0.4 psu; however, it significantly underestimates the salinity near the river mouths, whereas the estuarine salinity river input simulations are closer to reality. These results highlight the importance of river input salinity and realistic strong winds in reducing model biases of high-resolution simulations for the Bay of Bengal.

Share

The Sea: The Science of Ocean Prediction

Pinardi, N., P.F.J. Lermusiaux, K.H. Brink, and R.H. Preller, 2017. The Sea: The Science of Ocean Prediction. Preface to The Sea. Volume 17, The Science of Ocean Prediction, Part 1. Special Issue, J. Marine Res. 75(3). pp. 101-102

At the beginning of the 20th century Vilhelm Bjerknes defined the “ultimate problem of meteorology and hydrography” as the discovery of “the laws according to which an atmospheric or hydrospheric state develops out of the preceding one” and the “precalculation of future states” from gridded analyzed observations—that is, forecasting. The development of the electronic computer and the vision of several meteorologists allowed the transformation of meteorology into a sophisticated scientific discipline based on physics and mathematics. The first successful meteorological forecast was carried out in the 1950s. Meteorological forecasting became an operational activity at the end of the 1960s. The contributions to society of such operations have been tremendous.

Share

From weather to ocean predictions: an historical viewpoint

Pinardi, N., L. Cavaleri, P. De Mey, C. Fratianni, I. Huthnance, P.F.J. Lermusiaux, A. Navarra, R. Preller, and S. Tibalidi, 2017. From Weather to Ocean Predictions: an Historical Viewpoint. The Sea. Volume 17, The Science of Ocean Prediction, Part 1, Special Issue, J. Marine Res. 75(3). pp. 103-159. https://doi.org/10.1357/002224017821836789

This paper reviews the historical development of concepts and practices in the science of ocean predictions. It begins with meteorology which conducted the first forecasting experiment in 1950, followed by the wind waves and continuing with tidal and storm surge predictions to arrive at the first successful ocean mesoscale forecast in 1983. The work of Professor A.R.Robinson of Harvard University who produced the first mesoscale ocean predictions for the deep ocean regions is documented for the first time. The scientific and technological developments that made accurate ocean predictions possible are connected with the gradual understanding of the importance of the oceanic mesoscales and their inclusion in the numerical models. Ocean forecasting developed first at the regional level, due to the relatively low computational requirements, but by the end of the nineties it was possible to produce global ocean uncoupled forecasts and coupled ocean-atmosphere seasonal forecasts.

Share

Northern Arabian Sea Circulation-Autonomous Research (NASCar): A Research Initiative Based on Autonomous Sensors

Centurioni, L.R., V. Hormann, L. D. Talley, I. Arzeno, L. Beal, M. Caruso, P. Conry, R. Echols, H. J. S. Fernando, S. N. Giddings, A. Gordon, H. Graber, R. Harcourt, S. R. Jayne, T. G. Jensen, C. M. Lee, P. F. J. Lermusiaux, P. L’Hegaret, A. J. Lucas, A. Mahadevan, J. L. McClean, G. Pawlak, L. Rainville, S. Riser, H. Seo, A. Y. Shcherbina, E. Skyllingstad, J. Sprintall, B. Subrahmanyam, E. Terrill, R. E. Todd, C. Trott, H. N. Ulloa, and H. Wang, 2017. Northern Arabian Sea Circulation-Autonomous Research (NASCar): A Research Initiative Based on Autonomous Sensors. Oceanography 30(2):74–87, https://doi.org/​10.5670/oceanog.2017.224.

The Arabian Sea circulation is forced by strong monsoonal winds and is characterized by vigorous seasonally reversing currents, extreme differences in sea surface salinity, localized substantial upwelling and widespread submesoscale thermohaline structures. Its complicated sea surface temperature patterns are important for the onset and evolution of the Asian Monsoon. Here we describe a program that aims to elucidate the role of upper ocean processes and atmospheric feedbacks in setting the sea surface temperature properties of the region. The wide range of spatial and temporal scales and the difficulty of accessing much of the region with ships due to piracy motivated a novel approach based on state-of-the-art autonomous ocean sensors and platforms. The extensive dataset that is being collected, combined with numerical models and remote sensing data, confirms the role of planetary waves in the reversal of the Somali Current system. These data also document the fast response of the upper equatorial ocean to the monsoon winds through changes in temperature and salinity and the connectivity of the surface currents across the northern Indian Ocean. New observations of thermohaline interleaving structures and mixing in setting the surface temperature properties of the northern Arabian Sea are also discussed.
Share

A Coupled-mode Shallow Water model for tidal analysis: Internal-tide reflection and refraction by the Gulf Stream

Kelly, S.M., P.F.J. Lermusiaux, T. F. Duda, and P.J. Haley Jr., 2016. A Coupled-mode Shallow Water model for tidal analysis: Internal-tide reflection and refraction by the Gulf Stream. J. Phys. Oceanogr., 46, 3661–3679, doi: 10.1175/JPO-D-16-0018.1.

A novel hydrostatic coupled-mode shallow water model (CSW) is developed and used to simulate tides in the greater Middle Atlantic Bight region. The model incorporates realistic stratification and topography, an internal tide generating function (ITGF) that provides internal tide forcing from existing surface tide parameters, and dynamical terms that describe linearized wave- mean-flow and mean-density interactions. Several idealized and realistic simulations are used to verify the model. These verification simulations include internal-tide interactions involving topographic coupling and mean-flow coupling, and comparisons with other simpler and more complex nonlinear primitive-equation models. Then, twenty-four simulations of internal tide generation and propagation in the greater Middle Atlantic Bight region are used to identify significant internal-tide interactions with the Gulf Stream. The simulations indicate that locally generated mode-1 internal tides can refract and/or reflect at the Gulf Stream. The redirected internal tides often re-appear at the shelfbreak, where they produce onshore energy fluxes that are intermittent (i.e., noncoherent) because meanders in the Gulf Stream alter their precise location, phase, and amplitude. These results provide an explanation for the anomalous onshore energy fluxes previously observed at the New Jersey Shelfbreak and linked with the generation of nonlinear internal waves.
Share

Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front

Kelly, S.M. and P.F.J. Lermusiaux, 2016. Internal-tide interactions with the Gulf Stream and Middle Atlantic Bight shelfbreak front. Journal of Geophysical Research - Oceans, 121, 6271–6294, doi:10.1002/2016JC011639.

Internal tides in the Middle Atlantic Bight region are noticeably influenced by the presence of the shelfbreak front and the Gulf Stream. To identify the dominant interactions of these waves with subtidal flows, vertical-mode momentum and energy partial di fferential equations are derived for small-amplitude waves in a horizontally and vertically sheared mean flow and in a horizontally and vertically variable density fi eld. First, the energy balances are examined in idealized simulations with mode-1 internal tides propagating across and along the Gulf Stream. Next, the fully-nonlinear dynamics of regional tide-mean flow interactions are simulated with a primitive equation model, which incorporates realistic summer mesoscale features and atmospheric forcing. The summer shelfbreak front, which has horizontally variable strati cation, decreases topographic internal-tide generation by about 10% and alters the wavelengths and arrival times of locally generated mode-1 internal tides on the shelf and in the abyss. The (sub)-mesoscale variability at the front and on the shelf, as well as the summer strati cation itself, also alter the internal tide propagation. The Gulf Stream produces anomalous regions of O(20 mW m2) mode-1 internal-tide energy-flux divergence, which are explained by mean-flow terms in the mode-1 energy balance. Advection explains most tide-mean flow interaction, suggesting that geometric wave theory predicts mode-1 reflection and refraction at the Gulf Stream. Geometric theory predicts that o ffshore-propagating mode-1 internal tides that strike the Gulf Stream at oblique angles (more than thirty degrees from normal) are reflected back to the coastal ocean, preventing their radiation into the central North Atlantic.
Share

Global Analysis of Navier-Stokes and Boussinesq Stochastic Flows using Dynamical Orthogonality

Sapsis, T.P., M.P. Ueckermann and P.F.J. Lermusiaux, 2013. Global Analysis of Navier-Stokes and Boussinesq Stochastic Flows using Dynamical Orthogonality, J. Fluid Mech., 734, 83-113. doi:10.1017/jfm.2013.458

We provide a new framework for the study of fl‡uid ‡flows presenting complex uncertain behavior. Our approach is based on the stochastic reduction and analysis of the governing equations using the dynamically orthogonal field equations. By numerically solving these equations we evolve in a fully coupled way the mean fl‡ow and the statistical and spatial characteristics of the stochastic fl‡uctuations. This set of equations is formulated for the general case of stochastic boundary conditions and allows for the application of projection methods that reduce considerably the computational cost. We analyze the transformation of energy from stochastic modes to mean dynamics, and vice-versa, by deriving exact expressions that quantify the interaction among different components of the fl‡ow. The developed framework is illustrated through specifi…c fl‡ows in unstable regimes. In particular, we consider the ‡flow behind a disk and the Rayleigh–-Bénard convection, for which we construct bifurcation diagrams that describe the variation of the response as well as the energy transfers for different parameters associated with the considered ‡flows. We reveal the low-dimensionality of the underlying stochastic attractor.
Share

Circulations and Intrusions Northeast of Taiwan – Chasing Uncertainty in the Cold Dome.

Gawarkiewicz, G., S. Jan, P.F.J. Lermusiaux, J.L. McClean, L. Centurioni, K. Taylor, B. Cornuelle, T.F. Duda, J. Wang, Y.J. Yang, T. Sanford, R.-C. Lien, C. Lee, M.-A. Lee, W. Leslie, P.J. Haley Jr., P.P. Niiler, G. Gopalakrishnan, P. Velez-Belchi, D.-K. Lee, and Y.Y. Kim. 2011. Circulation and intrusions northeast of Taiwan: Chasing and predicting uncertainty in the cold dome. Oceanography, 24(4):110-121, http://dx.doi.org/10.5670/oceanog.2011.99.

An important element of present oceanographic research is the assessment and quantification of uncertainty. These studies are challenging in the coastal ocean due to the wide variety of physical processes occurring on a broad range of spatial and temporal scales. In order to assess new methods for quantifying and predicting uncertainty, a joint Taiwan-US field program was undertaken in August/ September 2009 to compare model forecasts of uncertainties in ocean circulation and acoustic propagation, with high-resolution in situ observations. The geographical setting was the continental shelf and slope northeast of Taiwan, where a feature called the “cold dome” frequently forms. Even though it is hypothesized that Kuroshio subsurface intrusions are the water sources for the cold dome, the dome’s dynamics are highly uncertain, involving multiple scales and many interacting ocean features. During the experiment, a combination of near-surface and profiling drifters, broadscale and high-resolution hydrography, mooring arrays, remote sensing, and regional ocean model forecasts of fields and uncertainties were used to assess mean fields and uncertainties in the region. River runoff from Typhoon Morakot, which hit Taiwan August 7-8, 2009, strongly affected shelf stratification. In addition to the river runoff, a cold cyclonic eddy advected into the region north of the Kuroshio, resulting in a cold dome formation event. Uncertainty forecasts were successfully employed to guide the hydrographic sampling plans. Measurements and forecasts also shed light on the evolution of cold dome waters, including the frequency of eddy shedding to the north-northeast, and interactions with the Kuroshio and tides. For the first time in such a complex region, comparisons between uncertainty forecasts and the model skill at measurement locations validated uncertainty forecasts. To complement the real-time model simulations, historical simulations with another model show that large Kuroshio intrusions were associated with low sea surface height anomalies east of Taiwan, suggesting that there may be some degree of predictability for Kuroshio intrusions.

Share

Special issue of Dynamics of Atmospheres and Oceans in honor of Prof. A.R. Robinson

Lermusiaux, P.F.J, A.J. Miller and N. Pinardi, 2011. Special issue of Dynamics of Atmospheres and Oceans in honor of Prof. A.R. Robinson, Editorial, Dynamics of Atmospheres and Oceans, 52, 1-3, doi:10.1016/j.dynatmoce.2011.08.001.

Professor Allan R. Robinson was one of the founding fathers of geophysical fluid dynamics. His research interests and seminal contributions have encompassed the dynamics of rotating and stratified fluids, boundary-layer flows, thermocline dynamics, the dynamics and modeling of mesoscale ocean currents, and the influence of physical processes on ocean biology. He is recognized as one of the pioneers and leading experts in modern ocean prediction, and contributed significantly to the techniques for the assimilation of data into ocean forecasting models. In the late 1950s and 1960s, Prof. Robinson’s research focused on fundamental geophysical fluid dynamics, including major contributions to thermocline theory, the wind-driven ocean circulation, coastally trapped waves, inertial currents and boundary layers. In the early 1970s, Prof. Robinson initiated investigations on realistic flow fields focusing in particular on mesoscale dynamics and forecasting, with contributions to western boundary currents, mesoscale eddies and baroclinic instabilities. He pioneered “ocean weather forecasting science” at the beginning of the 1980s, especially the development of conceptual models for the assimilation of both in situ and satellite data, specializing in the 1990s in the coupling between the deep sea and the coastal ocean. Focusing on mesoscale dynamics and coastal interactions, he also contributed to the development of new coupled physical-biological-acoustical and optical models, and he developed theories on the effects of oceanic motions on biological dynamics. Professor Robinson was also the Founding Editor of Dynamics of Atmospheres and Oceans.
Share

Oceanographic and Atmospheric Conditions on the Continental Shelf North of the Monterey Bay during August 2006

Ramp, S.R., P.F.J. Lermusiaux, I. Shulman, Y. Chao, R.E. Wolf, and F.L. Bahr, 2011. Oceanographic and Atmospheric Conditions on the Continental Shelf North of the Monterey Bay during August 2006. Dynamics of Atmospheres and Oceans, 52, 192-223, doi:10.1016/j.dynatmoce.2011.04.005.

A comprehensive data set from the ocean and atmosphere was obtained just north of the Monterey Bay as part of the Monterey Bay 2006 (MB06) field experiment. The wind stress, heat fluxes, and sea surface temperature were sampled by the Naval Postgraduate School’s Twin Otter research aircraft. In situ data were collected using ships, moorings, gliders and AUVs. Four data-assimilating numerical models were additionally run, including the Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) model for the atmosphere and the Harvard Ocean Prediction System (HOPS), the Regional Ocean Modeling System (ROMS), and the Navy Coastal Ocean Model (NCOM) for the ocean. The scientific focus of the Adaptive Sampling and Prediction Experiment (ASAP) was on the upwelling/relaxation cycle and the resulting three-dimensional coastal circulation near a coastal promontory, in this case Point Ano Nuevo, CA. The emphasis of this study is on the circulation over the continental shelf as estimated from the wind forcing, two ADCP moorings, and model outputs. The wind stress during August 2006 consisted of 3-10 day upwelling favorable events separated by brief 1-3 day relaxations. During the first two weeks there was some correlation between local winds and currents and the three models’ capability to reproduce the events. During the last two weeks, largely equatorward surface wind stress forced the sea surface and barotropic poleward flow occurred over the shelf, reducing model skill at predicting the circulation. The poleward flow was apparently remotely forced by mesoscale eddies and alongshore pressure gradients, which were not well simulated by the models. The small, high-resolution model domains were highly reliant on correct open boundary conditions to drive these larger-scale poleward flows. Multiply-nested models were no more effective than well-initialized local models in this respect.
Share

The California Current System: A Multiscale Overview and the Development of a Feature-Oriented Regional Modeling System (FORMS)

Gangopadhyay, A., P.F.J. Lermusiaux, L. Rosenfeld, A.R. Robinson, L. Calado, H.S. Kim, W.G. Leslie and P.J. Haley, Jr., 2011. The California Current System: A Multiscale Overview and the Development of a Feature-Oriented Regional Modeling System (FORMS). Dynamics of Atmospheres and Oceans, 52, 131-169, doi:10.1016/j.dynatmoce.2011.04.003.

Over the past decade, the feature-oriented regional modeling methodology has been developed and applied in several ocean domains, including the western North Atlantic and tropical North Atlantic. This methodology is model-independent and can be utilized with or without satellite and/or in situ observations. Here we develop new feature-oriented models for the eastern North Pacific from 36 to 48? – essentially, most of the regional eastern boundary current. This is the first time feature-modeling has been applied to a complex eastern boundary current system. As a prerequisite to feature modeling, prevalent features that comprise the multiscale and complex circulation in the California Current system (CCS) are first overviewed. This description is based on contemporary understanding of the features and their dominant space and time scales of variability. A synergistic configuration of circulation features interacting with one another on multiple and sometimes overlapping space and time scales as a meander-eddy-upwelling system is presented. The second step is to define the feature-oriented regional modeling system (FORMS). The major multiscale circulation features include the mean flow and southeastward meandering jet(s) of the California Current (CC), the poleward flowing California Undercurrent (CUC), and six upwelling regions along the coastline. Next, the typical synoptic width, location, vertical extent, and core characteristics of these features and their dominant scales of variability are identified from past observational, theoretical and modeling studies. The parameterized features are then melded with the climatology, in situ and remotely sensed data, as available. The methodology is exemplified here for initialization of primitiveequation models. Dynamical simulations are run as nowcasts and short-term (4-6 weeks) forecasts using these feature models (FM) as initial fields and the Princeton Ocean Model (POM) for dynamics. The set of simulations over a 40-day period illustrate the applicability of FORMS to a transient eastern boundary current region such as the CCS. Comparisons are made with simulations initialized from climatology only. The FORMS approach increases skill in several factors, including the: (i) maintenance of the low-salinity pool in the core of the CC; (ii) representation of eddy activity inshore of the coastal transition zone; (iii) realistic eddy kinetic energy evolution; (iv) subsurface (intermediate depth) mesoscale feature evolution; and (v) deep poleward flow evolution.
Share

Preparing to Predict: The Second Autonomous Ocean Sampling Network (AOSN-II) Experiment in the Monterey Bay

Ramp, S.R., R. E. Davis, N. E. Leonard, I. Shulman, Y. Chao, A. R. Robinson, J. Marsden, P.F.J. Lermusiaux, D. Fratantoni, J. D. Paduan, F. Chavez, F. L. Bahr, S. Liang, W. Leslie, and Z. Li, 2009. Preparing to Predict: The Second Autonomous Ocean Sampling Network (AOSN-II) Experiment in the Monterey Bay. Special issue on AOSN-II, Deep Sea Research, Part II, 56, 68-86, doi: 10.1016/j.dsr2.2008.08.013.

The Autonomous Ocean Sampling Network Phase Two (AOSN-II) experiment was conducted in and offshore from the Monterey Bay on the central California coast during July 23-September 6, 2003. The objective of the experiment was to learn how to apply new tools, technologies, and analysis techniques to adaptively sample the coastal ocean in a manner demonstrably superior to traditional methodologies, and to use the information gathered to improve predictive skill for quantities of interest to end-users. The scientific goal was to study the upwelling/relaxation cycle near an open coastal bay in an eastern boundary current region, particularly as it developed and spread from a coastal headland. The suite of observational tools used included a low-flying aircraft, a fleet of underwater gliders, including several under adaptive autonomous control, and propeller-driven AUVs in addition to moorings, ships, and other more traditional hardware. The data were delivered in real time and assimilated into the Harvard Ocean Prediction System (HOPS), the Navy Coastal Ocean Model (NCOM), and the Jet Propulsion Laboratory implementation of the Regional Ocean Modeling System (JPL/ROMS).

Two upwelling events and one relaxation event were sampled during the experiment. The upwelling in both cases began when a pool of cold water less than 13oC appeared near Cape Ano Nuevo and subsequently spread offshore and southward across the bay as the equatorward wind stress continued. The primary difference between the events was that the first event spread offshore and southward, while the second event spread only southward and not offshore. The difference is attributed to the position and strength of meanders and eddies of the California Current System offshore, which blocked or steered the cold upwelled water. The space and time scales of the mesoscale variability were much shorter than have been previously observed in deep-water eddies offshore. Additional process studies are needed to elucidate the dynamics of the flow.
Share

Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment.

Haley, P.J. Jr., P.F.J. Lermusiaux, A.R. Robinson, W.G. Leslie, O. Logutov, G. Cossarini, X.S. Liang, P. Moreno, S.R. Ramp, J.D. Doyle, J. Bellingham, F. Chavez, S. Johnston, 2009. Forecasting and Reanalysis in the Monterey Bay/California Current Region for the Autonomous Ocean Sampling Network-II Experiment. Special issue on AOSN-II, Deep Sea Research, Part II. ISSN 0967-0645, doi: 10.1016/j.dsr2.2008.08.010.

During the August-September 2003 Autonomous Ocean Sampling Network-II experiment, the Harvard Ocean Prediction System (HOPS) and Error Subspace Statistical Estimation (ESSE) system were utilized in real-time to forecast physical fields and uncertainties, assimilate various ocean measurements (CTD, AUVs, gliders and SST data), provide suggestions for adaptive sampling, and guide dynamical investigations. The qualitative evaluations of the forecasts showed that many of the surface ocean features were predicted, but that their detailed positions and shapes were less accurate. The root-mean-square errors of the real-time forecasts showed that the forecasts had skill out to two days. Mean one-day forecast temperature RMS error was 0.26oC less than persistence RMS error. Mean two-day forecast temperature RMS error was 0.13oC less than persistence RMS error. Mean one- or two-day salinity RMS error was 0.036 PSU less than persistence RMS error. The real-time skill in the surface was found to be greater than the skill at depth. Pattern correlation coefficient comparisons showed, on average, greater skill than the RMS errors. For simulations lasting 10 or more days, uncertainties in the boundaries could lead to errors in the Monterey Bay region.

Following the real-time experiment, a reanalysis was performed in which improvements were made in the selection of model parameters and in the open-boundary conditions. The result of the reanalysis was improved long-term stability of the simulations and improved quantitative skill, especially the skill in the main thermocline (RMS simulation error 1oC less than persistence RMS error out to five days). This allowed for an improved description of the ocean features. During the experiment there were two-week to 10-day long upwelling events. Two types of upwelling events were observed: one with plumes extending westward at point Ano Nuevo (AN) and Point Sur (PS); the other with a thinner band of upwelled water parallel to the coast and across Monterey Bay. During strong upwelling events the flows in the upper 10-20 m had scales similar to atmospheric scales. During relaxation, kinetic energy becomes available and leads to the development of mesoscale features. At 100-300 m depths, broad northward flows were observed, sometimes with a coastal branch following topographic features. An anticyclone was often observed in the subsurface fields in the mouth of Monterey Bay.
Share

At-sea Real-time Coupled Four-dimensional Oceanographic and Acoustic Forecasts during Battlespace Preparation 2007

Lam, F.P, P.J. Haley, Jr., J. Janmaat, P.F.J. Lermusiaux, W.G. Leslie, and M.W. Schouten, 2009. At-sea Real-time Coupled Four-dimensional Oceanographic and Acoustic Forecasts during Battlespace Preparation 2007. Special issue of the Journal of Marine Systems on "Coastal processes: challenges for monitoring and prediction", Drs. J.W. Book, Prof. M. Orlic and Michel Rixen (Guest Eds.), 78, S306-S320, doi: 10.1016/j.jmarsys.2009.01.029.

Systems capable of forecasting ocean properties and acoustic performance in the littoral ocean are becoming a useful capability for scientific and operational exercises. The coupling of a data-assimilative nested ocean modeling system with an acoustic propagation modeling system was carried out at sea for the first time, within the scope of Battlespace Preparation 2007 (BP07) that was part of Marine Rapid Environmental Assessment (MREA07) exercises. The littoral region for our studies was southeast of the island of Elba ( Italy) in the Tyrrhenian basin east of Corsica and Sardinia. During BP07, several vessels collected in situ ocean data, based in part on recommendations from oceanographic forecasts. The data were assimilated into a four- dimensional high-resolution ocean modeling system. Sound-speed forecasts were then used as inputs for bearing- and range-dependent acoustic propagation forecasts. Data analyses are carried out and the set-up of the coupled oceanographic-acoustic system as well as the results of its real-time use are described. A significant finding is that oceanographic variability can considerably influence acoustic propagation properties, including the probability of detection, even in this apparently quiet region around Elba. This strengthens the importance of coupling at-sea acoustic modeling to real-time ocean forecasting. Other findings include the challenges involved in downscaling basin-scale modeling systems to high-resolution littoral models, especially in the Mediterranean Sea. Due to natural changes, global human activities and present model resolutions, the assimilation of synoptic regional ocean data is recommended in the region.
Share

A multigrid methodology for assimilation of measurements into regional tidal models

Logutov, O.G., 2008. A multigrid methodology for assimilation of measurements into regional tidal models. Ocean Dynamics, 58, 441-460, doi:10.1007/s10236-008-0163-4.

This paper presents a rigorous, yet practical, method of multigrid data assimilation into regional structured-grid tidal models. The new inverse tidal nesting scheme, with nesting across multiple grids, is designed to provide a fit of the tidal dynamics to data in areas with highly complex bathymetry and coastline geometry. In these areas, computational constraints make it impractical to fully resolve local topographic and coastal features around all of the observation sites in a stand-alone computation. The proposed strategy consists of increasing the model resolution in multiple limited area domains around the observation locations where a representativeness error is detected in order to improve the representation of the measurements with respect to the dynamics. Multiple high-resolution nested domains are set up and data assimilation is carried out using these embedded nested computations. Every nested domain is coupled to the outer domain through the open boundary conditions (OBCs). Data inversion is carried out in a control space of the outer domain model. A level of generality is retained throughout the presentation with respect to the choice of the control space; however, a specific example of using the outer domain OBCs as the control space is provided, with other sensible choices discussed. In the forward scheme, the computations in the nested domains do not affect the solution in the outer domain. The subsequent inverse computations utilize the observation-minus-model residuals of the forward computations across these multiple nested domains in order to obtain the optimal values of parameters in the control space of the outer domain model. The inversion is carried out by propagating the uncertainty from the control space to model tidal fields at observation locations in the outer and in the nested domains using efficient low-rank error covariance representations. Subsequently, an analysis increment in the control space of the outer domain model is computed and the multigrid system is steered optimally towards observations while preserving a perfect dynamical balance. The method is illustrated using a real-world application in the context of the Philippines Strait Dynamics experiment.
Share

Multi-Scale Modelling: Nested Grid and Unstructured Mesh Approaches, Editorial

Deleersnijder, E. and P.F.J. Lermusiaux, (Guest Eds.), 2008. Multi-Scale Modelling: Nested Grid and Unstructured Mesh Approaches, Editorial. Ocean Dynamics, 58, 335-336, Springer. doi: 10.1007/s10236-008-0170-5.

In 1969, the Journal of Computational Physics published a seminal article by K. Bryan presenting the first ocean general circulation model. Since then, many numerical studies of the World Ocean, as well as regional or coastal flows, used models directly or indirectly inspired by the work of Bryan and his colleagues. A number of these models have evolved into highly modular and versatile computational systems, including multiple physical modules and options as well as varied biogeochemical, ecosystem and acoustics modeling capabilities. Several modeling systems are now well-documented tools, which are widely used in research institutions and various organizations around the world. The list of such modeling systems is large and too long to be summarized in this editorial. Over the last three decades, significant progress has been made in the parameterization of subgrid-scale processes, in data assimilation methodologies and in boundary condition schemes, as well as in the efficient implementation of algorithms on fast vector and subsequently parallel computers, allowing higher and higher resolution in space and time. However, many of today’s popular modeling systems can still be regarded as members of the first generation of ocean models: at their core, rather similar geophysical fluid dynamics equations are solved numerically using a conservative finite-difference method on a structured grid. Today, several aspects of structured-grid models could benefit from significant upgrades, learning from major advances in computational fluid dynamics. In particular, the use of a structured grid limits the flexibility in the spatial resolution and does not allow one to take full advantage of numerical algorithms such as finite volumes and finite elements, which can achieve their best performance when implemented on unstructured meshes. Even though many of today’s complex marine modeling and data assimilation systems have evolved significantly since Bryan’s prototype, it would be challenging to modify them step-by-step from a structured-grid approach to an unstructured-grid one. Therefore, novel marine model design research is underway, paving the way for the second generation of ocean modeling systems. It is difficult to predict today if this new generation of ocean models will achieve its chief objective: widening the range of resolved scales of motion with increased efficiencies and accuracies, possibly allowing multi-resolution, multi-scale, and multidynamics numerical simulations of marine flows, all occurring seamlessly within distributed computing environments. In fact, hybrid approaches merging the advantages of structured and unstructured-grid modeling may be the way forward. Whether or not unstructured mesh approaches will prevail is all the more difficult to predict now that structured mesh modelers have developed powerful solutions for increasing the resolution when and where needed. For instance, grid embedding is still a popular and useful method for enhancing model resolution. It can involve multiply nested domains and allows the relatively straightforward use of different dynamics or models in each domain. Research is also underway for developing multigrid, wavelet, and other multi-scale decompositions for the numerical solution of dynamical equations but also for the study of results, model evaluation or data assimilation. This special issue presents a number of examples of the abovementioned developments. Ringler et al. examine the potential of spherical centroidal Voronoi tessellations for performing multi-resolution simulations; they apply this method to the Greenland ice sheet and the North Atlantic Ocean. Lambrechts et al. present a triangular mesh generation system and its applications to the World Ocean and various shelf seas, including the Great Barrier Reef, Australia. Finite element models on unstructured grids are described and utilized in several manuscripts. Bellafiore et al. study the Adriatic Sea and the Lagoon of Venice, while Jones and Davies simulate tides and storm surges along the western coast of Britain. Danilov et al. assess two finite element discretizations, i.e., a continuous element and a non-conforming one, and compare the results of these discretizations with those of a finite-difference model. In Harig et al., the tsunami generated by the great Sumatra-Andaman earthquake of 26 December 2004 is simulated by means of a finite element model. Comparisons are carried out with various types of data as well as with the results of a structured mesh model using a nested structured-grid system. A nested-grid ocean circulation model is also employed by Yang and Sheng to carry out a process study on the Inner Scotian Shelf, Canada, focusing on the circulation induced by a tropical storm. Debreu and Blayo present a detailed review of two-way embedding algorithms for structured-grid models. Finally, Logutov develops a multi-scale assimilation scheme for tidal data within the framework of a multiply nested structured-grid barotropic tidal modeling approach. As illustrated by these manuscripts, the next generation of ocean modelers is motivated by a wide range of research opportunities over a rich spectrum of needs. Future progress will involve fundamental and applied numerical and computational research as well as new multi-scale geophysical fluid modeling. Domains of ongoing interest range from estuaries to the global ocean, including coastal regions and shelf seas. New multi-scale modeling of physical as well as biological, chemical or interdisciplinary processes will flourish in the coming decades. We are grateful to the authors for their contributions and to the chief-editor for his support in this endeavor. We are thankful to the reviewers for their time and help in assessing the manuscripts submitted to this special issue. Eric Deleersnijder is a Research associate with the Belgian National Fund for Scientific Research (FNRS); he is indebted to the Communaut Francaise de Belgique for its support through contract ARC 04/09-316. Pierre Lermusiaux is grateful to the Office of Naval Research for support under grant N00014-08-1-1097 to the Massachusetts Institute of Technology.
Share

Inverse Barotropic Tidal Estimation for Regional Ocean Applications

Logutov, O.G. and Lermusiaux, P.F.J., 2008. Inverse Barotropic Tidal Estimation for Regional Ocean Applications. Ocean Modeling, 25, 17-34. doi: 10.1016/j.ocemod.2008.06.004.

Correct representation of tidal processes in regional ocean models is contingent on the accurate specification of open boundary conditions. This paper describes a new inverse scheme for the assimilation of observational data into a depth-integrated spectral shallow water tidal model and the numerical implementation of this scheme into a stand-alone computational system for regional tidal prediction. A novel aspect is a specific implementation of the inverse which does not require an adjoint model. An optimization is carried out in the open boundary condition space rather than in the observational space or model state space. Our approach reflects the specifics of regional tidal modeling applications in which open boundary conditions (OBCs) typically constitute a significant source of uncertainty. Regional tidal models rely predominantly on global tidal estimates for open boundary conditions. As the resolution of global tidal models is insufficient to fully resolve regional topographic and coastal features, the a priori OBC estimates potentially contain an error. It is, therefore, desirable to correct these OBCs by finding an inverse OBC estimate that is fitted to the regional observations, in accord with the regional dynamics and respective error estimates. The data assimilation strategy presented in this paper provides a consistent and practical estimation scheme for littoral ocean science and applications where tidal effects are significant. Illustrations of our methodological and computational results are presented in the area of Dabob Bay and Hood Canal, WA, which is a region connected to the open Pacific ocean through a series of inland waterways and complex shorelines and bathymetry.
Share

Path Planning Methods for Adaptive Sampling of Environmental and Acoustical Ocean Fields

Yilmaz, N.K., C. Evangelinos, N.M. Patrikalakis, P.F.J. Lermusiaux, P.J. Haley, W.G. Leslie, A.R. Robinson, D. Wang and H. Schmidt, 2006a. Path Planning Methods for Adaptive Sampling of Environmental and Acoustical Ocean Fields, Oceans 2006, 6pp, Boston, MA, 18-21 Sept. 2006, doi: 10.1109/OCEANS.2006.306841.

Adaptive sampling aims to predict the types and locations of additional observations that are most useful for specific objectives, under the constraints of the available observing network. Path planning refers to the computation of the routes of the assets that are part of the adaptive component of the observing network. In this paper, we present two path planning methods based on Mixed Integer Linear Programming (MILP). The methods are illustrated with some examples based on environmental ocean fields and compared to highlight their strengths and weaknesses. The stronger method is further demonstrated on a number of examples covering multi-vehicle and multi-day path planning, based on simulations for the Monterey Bay region. The framework presented is powerful and flexible enough to accommodate changes in scenarios. To demonstrate this feature, acoustical path planning is also discussed.
Share

Coupled physical and biogeochemical data driven simulations of Massachusetts Bay in late summer: real-time and post-cruise data assimilation

Besiktepe, S.T., P.F.J. Lermusiaux and A.R. Robinson, 2003. Coupled physical and biogeochemical data driven simulations of Massachusetts Bay in late summer: real-time and post-cruise data assimilation. Special issue on "The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the oceans", M. Gregoire, P. Brasseur and P.F.J. Lermusiaux (Eds.), Journal of Marine Systems, 40, 171-212.

Data-driven forecasts and simulations for Massachusetts Bay based on in situ observations collected during August – September 1998 and on coupled four-dimensional (4-D) physical and biogeochemical models are carried out, evaluated, and studied. The real-time forecasting and adaptive sampling took place from August 17 to October 5, 1998. Simultaneous synoptic physical and biogeochemical data sets were obtained over a range of scales. For the real-time forecasts, the physical model was initialized using hydrographic data from August 1998 and the new biogeochemical model using historical data. The models were forced with real-time meteorological fields and the physical data were assimilated. The resulting interdisciplinary forecasts were robust and the Bay-scale biogeochemical variability was qualitatively well represented. For the postcruise simulations, the August – September 1998 biogeochemical data are utilized. Extensive comparisons of the coupled model fields with data allowed significant improvements of the biogeochemical model. All physical and biogeochemical data are assimilated using an optimal interpolation scheme. Within this scheme, an approximate biogeochemical balance and dynamical adjustments are utilized to derive the non-observed ecosystem variables from the observed ones. Several processes occurring in the lower trophic levels of Massachusetts Bay during the summer – autumn period over different spatial and temporal scales are described. The coupled dynamics is found to be more vigorous and diverse than previously thought to be the case in this period. For the biogeochemical dynamics, multiscale patchiness occurs. The locations of the patches are mainly defined by physical processes, but their strengths are mainly controlled by biogeochemical processes. The fluxes of nutrients into the euphotic zone are episodic and induced in part by atmospheric forcing. The quasi-weekly passage of storms gradually deepened the mixed layer and often altered the Bay-scale circulation and induced internal submesoscale variability. The physical variability increased the transfer of biogeochemical materials between the surface and deeper layers and modulated the biological processes.
Share

Data driven simulations of synoptic circulation and transports in the Tunisia-Sardinia-Sicily region

Onken, R., A.R. Robinson, P.F.J. Lermusiaux, P.J. Haley Jr. and L.A. Anderson, 2003. Data driven simulations of synoptic circulation and transports in the Tunisia-Sardinia-Sicily region. Journal of Geophysical Research, 108, (C9), 8123-8136.

Data from a hydrographic survey of the Tunisia-Sardinia-Sicily region are assimilated into a primitive equations ocean model. The model simulation is then averaged in time over the short duration of the data survey. The corresponding results, consistent with data and dynamics, are providing new insight into the circulation of Modified Atlantic Water (MAW) and Levantine Intermediate Water (LIW) in this region of the western Mediterranean. For MAW these insights include a southward jet off the east coast of Sardinia, anticyclonic recirculation cells on the Algerian and Tunisian shelves, and a secondary flow splitting in the Strait of Sicily. For the LIW regime a detailed view of the circulation in the Strait of Sicily is given, indicating that LIW proceeds from the strait to the Tyrrhenian Sea. No evidence is found for a direct current path to the Sardinia Channel. Complex circulation patterns are validated by two-way nesting of critical regions. Volume transports are computed for the Strait of Sicily, the Sardinia Channel, and the passage between Sardinia and Sicily.
Share

The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean

Gregoire, M., P. Brasseur and P.F.J. Lermusiaux (Guest Eds.), 2003. The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean. Journal of Marine Systems, 40, 1-3.

The International Lie`ge Colloquium on Ocean Dynamics is organized annually. The topic differs from year to year in an attempt to address, as much as possible, recent problems and incentive new subjects in oceanography. Assembling a group of active and eminent scientists from various countries and often different disciplines, the Colloquia provide a forum for discussion and foster a mutually beneficial exchange of information opening on to a survey of recent discoveries, essential mechanisms, impelling question marks and valuable recommendations for future research. The objective of the 2001 Colloquium was to evaluate the progress of data assimilation methods in marine science and, in particular, in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean. The past decades have seen important advances in the understanding and modelling of key processes of the ocean circulation and bio-geo-chemical cycles. The increasing capabilities of data and models, and their combination, are allowing the study of multidisciplinary interactions that occur dynamically, in multiple ways, on multiscales and with feedbacks. The capacity of dynamical models to simulate interdisciplinary ocean processes over specific space- time windows and thus forecast their evolution over predictable time scales is also conditioned upon the availability of relevant observations to: initialise and continually update the physical and bio-geo-chemical sectors of the ocean state; provide relevant atmospheric and boundary forcing; calibrate the parameterizations of sub-grid scale processes, growth rates and reaction rates; construct interdisciplinary and multiscale correlation and feature models; identify and estimate the main sources of errors in the models; control or correct for mis-represented or neglected processes. The access to multivariate data sets requires the implementation, exploitation and management of dedicated ocean observing and prediction systems. However, the available data are often limited and, for instance, seldom in a form to be directly compatible or directly inserted into the numerical models. To relate the data to the ocean state on all scales and regions that matter, evolving three-dimensional and multivariate (measurement) models are becoming important. Equally significant is the reduction of observational requirements by design of sampling strategies via Observation System Simulation Experiments and adaptive sampling. Data assimilation is a quantitative approach to extract adequate information content from the data and to improve the consistency between data sets and model estimates. It is also a methodology to dynamically interpolate between data scattered in space and time, allowing comprehensive interpretation of multivariate observations. In general, the goals of data assimilation are to: control the growth of predictability errors; correct dynamical deficiencies; estimate model parameters, including the forcings, initial and boundary conditions; characterise key processes by analysis of four- 0924-7963/03/$ – see front matter D 2003 Elsevier Science B.V. All rights reserved. doi:10.1016/S0924-7963(03)00027-7 www.elsevier.com/locate/jmarsys The use of data assimilation in coupled hydrodynamic, ecological and bio-geo-chemical models of the ocean Journal of Marine Systems 40-41 (2003) 1-3 dimensional fields and their statistics (balances of terms, etc.); carry out advanced sensitivity studies and Observation System Simulation Experiments, and conduct efficient operations, management and monitoring. The theoretical framework of data assimilation for marine sciences is now relatively well established, routed in control theory, estimation theory or inverse techniques, from variational to sequential approaches. Ongoing research efforts of special importance for interdisciplinary applications include the: stochastic representation of processes and determination of model and data errors; treatment of (open) boundary conditions and strong nonlinearities; space-time, multivariate extrapolation of limited and noisy data and determination of measurement models; demonstration that bio-geo-chemical models are valid enough and of adequate structures for their deficiencies to be controlled by data assimilation; and finally, ability to provide accurate estimates of fields, parameters, variabilities and errors, with large and complex dynamical models and data sets. Operationally, major engineering and computational challenges for the coming years include the: development of theoretically sound methods into useful, practical and reliable techniques at affordable costs; implementation of scalable, seamless and automated systems linking observing systems, numerical models and assimilation schemes; adequate mix of integrated and distributed (Web-based) networks; construction of user-friendly architectures and establishment of standards for the description of data and software (metadata) for efficient communication, dissemination and management. In addition to addressing the above items, the 33rd Lie`ge Colloquium has offered the opportunity to: – review the status and current progress of data assimilation methodologies utilised in the physical, acoustical, optical and bio-geo-chemical scientific communities; – demonstrate the potentials of data assimilation systems developed for coupled physical/ecosystem models, from scientific to management inquiries; – examine the impact of data assimilation and inverse modelling in improving model parameterisations; – discuss the observability and controllability properties of, and identify the missing gaps in current observing and prediction systems; and exchange the results of and the learnings from preoperational marine exercises. The presentations given during the Colloquium lead to discussions on a series of topics organized within the following sections: (1) Interdisciplinary research progress and issues: data, models, data assimilation criteria. (2) Observations for interdisciplinary data assimilation. (3) Advanced fields estimation for interdisciplinary systems. (4) Estimation of interdisciplinary parameters and model structures. (5) Assimilation methodologies for physical and interdisciplinary systems. (6) Toward operational interdisciplinary oceanography and data assimilation. A subset of these presentations is reported in the present Special Issue. As was pointed out during the Colloquium, coupled biological-physical data assimilation is in its infancy and much can be accomplished now by the immediate application of existing methods. Data assimilation intimately links dynamical models and observations, and it can play a critical role in the important area of fundamental biological oceanographic dynamical model development and validation over a hierarchy of complexities. Since coupled assimilation for coupled processes is challenging and can be complicated, care must be exercised in understanding, modeling and controlling errors and in performing sensitivity analyses to establish the robustness of results. Compatible interdisciplinary data sets are essential and data assimilation should iteratively define data impact and data requirements. Based on the results presented during the Colloquium, data assimilation is expected to enable future marine technologies and naval operations otherwise impossible or not feasible. Interdisciplinary predictability research, multiscale in both space and time, is required. State and parameter estimation via data assimilation is central to the successful establishment of advanced interdisciplinary ocean observing and prediction systems which, functioning in real time, will contribute to novel and efficient capabilities to manage, and to operate in our oceans. The Scientific Committee and the participants to the 33rd Lie`ge Colloquium wish to express their 2 Preface gratitude to the Ministe`re de l’Enseignement Supe’rieur et de la Recherche Scientifique de la Communaute – Francaise de Belgique, the Fonds National de la Recherche Scientifique de Belgique (F.N.R.S., Belgium), the Ministe`re de l’Emploi et de la Formation du Gouvernement Wallon, the University of Lie`ge, the Commission of European Union, the Scientific Committee on Oceanographic Research (SCOR), the International Oceanographic Commission of the UNESCO, the US Office of Naval Research, the National Science Foundation (NSF, USA) and the International Association for the Physical Sciences of the Ocean (IAPSO) for their most valuable support.
Share

Features of dominant mesoscale variability, circulation patterns and dynamics in the Strait of Sicily

Lermusiaux, P.F.J. and A.R. Robinson, 2001. Features of dominant mesoscale variability, circulation patterns and dynamics in the Strait of Sicily. Deep Sea Research. 48, (9), 1953-1997.

Combining an intensive hydrographic data survey with a numerical primitive equation model by data assimilation, the main features of dominant mesoscale to subbasin-scale variability in the Strait of Sicily (Mediterranean Sea) during the summer of 1996 are estimated, revealed and described, and several hydrographic and dynamical properties of the #ow and variabilities discussed. The feature identi”cation is based on two independent real-time analyses of the variability. One analysis `subjectivelya evaluates and studies physical “eld forecasts and their variations. The other more `objectivelya estimates and forecasts the principal components of the variability. The two independent analyses are found to be in agreement and complementary. The dominant dynamical variations are revealed to be associated with “ve features: the Adventure Bank Vortex, Maltese Channel Crest, Ionian Shelfbreak Vortex, Messina Rise Vortex, and temperature and salinity fronts of the Ionian slope. These features and their variations are found to have links with the meanders of the Atlantic Ionian Stream. For each feature, the characteristic physical scales, and their deviations, are quanti”ed. The predominant circulation patterns, pathways and transformations of the modi”ed Atlantic water, Ionian water and modi”ed Levantine intermediate water, are then identi”ed and discussed. For each of these water masses, the ranges of temperature, salinity, depth, velocity and residence times, and the regional variations of these ranges, are computed. Based on the estimated “elds and variability principal components, several properties of the dynamics in the Strait are discussed. These include: general characteristics of the mesoscale anomalies; bifurcations of the Atlantic Ionian Stream; respective roles of topography, atmospheric forcings and internal dynamics; factors controlling (strengthening or weakening) the vortices identi”ed; interactions of the Messina Rise and Ionian Shelfbreak vortices; and, mesoscale dynamics and relatively complex features along the Ionian slope. For evaluation and validation of the results obtained, in situ data, satellite sea surface temperature images and trajectories of surface drifters are employed, as well as comparisons with previous studies.
Share

Estimation and study of mesoscale variability in the Strait of Sicily

Lermusiaux, P.F.J., 1999b. Estimation and study of mesoscale variability in the Strait of Sicily. Dynamics of Atmospheres and Oceans, 29, 255-303.

Considering mesoscale variability in the Strait of Sicily during September 1996, the four-dimensional physical fields and their dominant variability and error covariances are estimated and studied. The methodology applied in real-time combines an intensive data survey and primitive equation dynamics based on the error subspace statistical estimation approach. A sequence of filtering and prediction problems are solved for a period of 10 days, with adaptive learning of the dominant errors. Intercomparisons with optimal interpolation fields, clear sea surface temperature images and available in situ data are utilized for qualitative and quantitative evaluations. The present estimation system is shown to be a comprehensive nonlinear and adaptive assimilation scheme, capable of providing real-time forecasts of ocean fields and associated dominant variability and error covariances. The initialization and evolution of the error subspace is explained. The dominant error eigenvectors, variance and covariance fields are illustrated and their multivariate, multiscale properties described. Five coupled features associated with the dominant variability in the Strait during August-September 1996 emerge from the dominant decomposition of the initial PE variability covariance matrix: the Adventure Bank Vortex, Maltese Channel Crest, Ionian Shelf Break Vortex, Strait of Messina Vortex, and subbasin-scale temperature and salinity fronts of the Ionian slope. From the evolution of the estimated fields and dominant predictability error covariance decompositions, several of the primitive equation processes associated with the variations of these features are revealed, decomposed and studied. In general, the estimation of the evolving dominant decompositions of the multivariate predictability error and variability covariances appears promising for ocean sciences and technology. The practical feedbacks of the present approach which include the determination of data optimals and the refinements of dynamical and measurement models are considered.
Share

The Atlantic Ionian Stream

Robinson, A.R., J. Sellschopp, A. Warn-Varnas, W.G. Leslie, C.J. Lozano, P.J. Haley Jr., L.A. Anderson and P.F.J. Lermusiaux, 1999. The Atlantic Ionian Stream. Journal of Marine Systems, 20, 129-156.

This paper describes some preliminary results of the cooperative effort between SACLANT Undersea Research Centre and Harvard University in the development of a regional descriptive and predictive capability for the Strait of Sicily. The aims of the work have been to: 1. determine and describe the underlying dynamics of the region; and, 2. rapidly assess synoptic oceanographic conditions through measurements and modeling. Based on the 1994-1996 surveys, a picture of some semi-permanent features which occur in the Strait of Sicily is beginning to emerge. Dynamical circulation studies, with assimilated data from the surveys, indicate the presence of an Adventure Bank Vortex – ABV., Maltese Channel Crest – MCC., and Ionian Shelf Break Vortex – IBV. A schematic water mass model has been developed for the region. Results from the Rapid Response 96 real-time numerical modeling experiments are presented and evaluated. A newly developed data assimilation methodology, Error Subspace Statistical Estimation – ESSE. is introduced. The ideal Error Subspace spans and tracks the scales and processes where the dominant, most energetic, errors occur, making this methodology especially useful in real-time adaptive sampling. q1999 Elsevier Science B.V. All rights reserved.
Share

Data assimilation via Error Subspace Statistical Estimation. Part II: Middle Atlantic Bight shelfbreak front simulations and ESSE validation

Lermusiaux, P.F.J., 1999a. Data assimilation via Error Subspace Statistical Estimation. Part II: Middle Atlantic Bight shelfbreak front simulations and ESSE validation. Monthly Weather Review, 127(7), 1408-1432, doi: 10.1175/1520-0493(1999)127<1408:DAVESS> 2.0.CO;2.

Identical twin experiments are utilized to assess and exemplify the capabilities of error subspace statistical estimation (ESSE). The experiments consists of nonlinear, primitive equation-based, idealized Middle Atlantic Bight shelfbreak front simulations. Qualitative and quantitative comparisons with an optimal interpolation (OI) scheme are made. Essential components of ESSE are illustrated. The evolution of the error subspace, in agreement with the initial conditions, dynamics, and data properties, is analyzed. The three-dimensional multivariate minimum variance melding in the error subspace is compared to the OI melding. Several advantages and properties of ESSE are discussed and evaluated. The continuous singular value decomposition of the nonlinearly evolving variations of variability and the possibilities of ESSE for dominant process analysis are illustrated and emphasized.
Share

A Topographic-Rossby mode resonance over the Iceland-Faeroe Ridge.

Miller, A.J., P.F.J. Lermusiaux and P.-M. Poulain, 1996. A Topographic-Rossby mode resonance over the Iceland-Faeroe Ridge. Journal of Physical Oceanography, 26 (12), 2735-2747. doi: http://dx.doi.org/10.1175/1520-0485(1996)026<2735:ATMROT>2.0.CO;2.

Share