loader graphic

Loading content ...

Adaptive Modeling, Adaptive Data Assimilation and Adaptive Sampling.

Lermusiaux, P.F.J, 2007. Adaptive Modeling, Adaptive Data Assimilation and Adaptive Sampling. Refereed invited manuscript. Special issue on "Mathematical Issues and Challenges in Data Assimilation for Geophysical Systems: Interdisciplinary Perspectives". C.K.R.T. Jones and K. Ide, Eds. Physica D, Vol 230, 172-196, doi: 10.1016/j.physd.2007.02.014.

For efficient progress, model properties and measurement needs can adapt to oceanic events and interactions as they occur. The combination of models and data via data assimilation can also be adaptive. These adaptive concepts are discussed and exemplified within the context of comprehensive real-time ocean observing and prediction systems. Novel adaptive modeling approaches based on simplified maximum likelihood principles are developed and applied to physical and physical-biogeochemical dynamics. In the regional examples shown, they allow the joint calibration of parameter values and model structures. Adaptable components of the Error Subspace Statistical Estimation (ESSE) system are reviewed and illustrated. Results indicate that error estimates, ensemble sizes, error subspace ranks, covariance tapering parameters and stochastic error models can be calibrated by such quantitative adaptation. New adaptive sampling approaches and schemes are outlined. Illustrations suggest that these adaptive schemes can be used in real time with the potential for most efficient sampling.

Adaptive Coupled Physical and Biogeochemical Ocean Predictions: A Conceptual Basis

Lermusiaux, P.F.J, C. Evangelinos, R. Tian, P.J. Haley, J.J. McCarthy, N.M. Patrikalakis, A.R. Robinson and H. Schmidt, 2004. Adaptive Coupled Physical and Biogeochemical Ocean Predictions: A Conceptual Basis. Refereed invited manuscript, F. Darema (Ed.), Lecture Notes in Computer Science, 3038, 685-692.

Physical and biogeochemical ocean dynamics can be intermittent and highly variable, and involve interactions on multiple scales. In general, the oceanic fields, processes and interactions that matter thus vary in time and space. For efficient forecasting, the structures and parameters of models must evolve and respond dynamically to new data injected into the executing prediction system. The conceptual basis of this adaptive modeling and corresponding computational scheme is the subject of this presentation. Specifically, we discuss the process of adaptive modeling for coupled physical and biogeochemical ocean models. The adaptivity is introduced within an interdisciplinary prediction system. Model-data misfits and data assimilation schemes are used to provide feedback from measurements to applications and modify the runtime behavior of the prediction system. Illustrative examples in Massachusetts Bay and Monterey Bay are presented to highlight ongoing progress.