Loading content ...
Pereira, E., M. Tieppo, J. Faria, D. Hart, P. Lermusiaux, and the K2D Project Team, 2023. Subsea Cables as Enablers of a Next Generation Global Ocean Sensing System. Oceanography 36(Supplement 1). doi:10.5670/oceanog.2023.s1.22. Special issue: "Frontiers in Ocean Observing: Emerging Technologies for Understanding and Managing a Changing Ocean"
The ocean is vast, complex, and increasingly threatened by human activities. There is an urgent need to find complementary ways to gather information and promote the comprehensive understanding and management of the ocean. The global network of subsea cables provides an opportunity to support a holistic ocean observation system. Data gathered from this system can be employed to anticipate and provide warning about hazardous events. Large-scale and widespread ocean monitoring may also enable the oversight and tracing of global phenomena that have local impacts.
The Knowledge and Data from the Deep to Space (K2D) project aims to develop the critical components that will enable the large-scale coupling of autonomous underwater vehicles (AUVs) and subsea cables for global ocean environmental monitoring and multi-hazard warning. Funded by the Fundação para a Ciência e Tecnologia/Massachusetts Institute of Technology Portugal Program and involving teams from Portugal and the United States, the project started in 2021 with a global budget of 1.4 M€ and an estimated duration of three years. Sustained ocean observation systems are scarce, especially those that focus on or near the seafloor. The combination of subsea cables and marine robotics is promising not only because it allows access to remote locations and provides an extensive network (deep sea, open ocean), but also because it combines a large set of capabilities in a highly resource-efficient way, unmatched by any other ocean observation approach. These assets may initiate the first global ocean “nervous system” in the near future.
Doshi, M.M., M.S. Bhabra, and P.F.J. Lermusiaux, 2023. Energy-Time Optimal Path Planning in Dynamic Flows: Theory and Schemes. Computer Methods in Applied Mechanics and Engineering 405: 115865. doi:10.1016/j.cma.2022.115865
We obtain, solve, and verify fundamental differential equations for energy-time path planning in dynamic flows. The equations govern the energy-time reachable sets, optimal paths, and optimal controls for autonomous vehicles navigating to any destination in known dynamic environments, minimizing both energy usage and travel time. Based on Hamilton-Jacobi theory for reachability and the level set method, the resulting methodology computes the Pareto optimal solutions to the multi-objective path planning problem, numerically solving the exact equations governing the evolution of reachability fronts and optimal paths in the augmented energy and physical-space domain. Our approach is applicable to path planning in various dynamic flow environments and energy types. We first validate the methodology through a benchmark case of crossing a steady jet for which we compare our results to semi-analytical optimal energy-time solutions. We then consider unsteady flow environments and solve for energy-time optimal missions in a quasi-geostrophic double-gyre flow field. Results show that our theory and schemes can provide all the energy-time optimal solutions and that these solutions can be strongly influenced by unsteady flow conditions.
Cococcioni, M., L. Fiaschi, and P.F.J. Lermusiaux, 2021. Game Theory for Unmanned Vehicles Path Planning in the Marine Domain: State of the Art and New Possibilities. Journal of Marine Science and Engineering 9(11), 1175. doi:10.3390/jmse9111175. Special Issue on Machine Learning and Remote Sensing in Ocean Science and Engineering.
Thanks to the advent of new technologies and higher real-time computational capabilities, the use of unmanned vehicles in the marine domain received a significant burst in the last decade. Ocean and seabed sampling, missions in dangerous areas, and civilians security are just a few of the large number of applications which currently benefit from unmanned vehicles. One of the most actively studied topic is their full autonomy, i.e., the design of marine vehicles capable of pursuing a task while reacting to the changes of the environment without the intervention of humans, not even remote. Environment dynamicity may consist in variations of currents, presence of unknown obstacles, and attacks from adversaries (e.g., pirates). To achieve autonomy in such highly dynamic uncertain conditions, many types of autonomous path planning problems need to be solved. There has thus been a commensurate number of approaches and methods to optimize such path planning. This work focuses on game theoretic ones and provides a wide overview of the current state of the art, along with future directions.
Mannarini, G., D.N. Subramani, P.F.J. Lermusiaux, and N. Pinardi, 2020. Graph-Search and Differential Equations for Time-Optimal Vessel Route Planning in Dynamic Ocean Waves, IEEE Transactions on Intelligent Transportation Systems 21(8), 3581-3593, doi:10.1109/TITS.2019.2935614
Time-optimal paths are evaluated by VISIR (“discoVerIng Safe and effIcient Routes”), a graph-search ship routing model, with respect to the solution of the fundamental differential equations governing optimal paths in a dynamic wind-wave environment. The evaluation exercise makes use of identical setups: topological constraints, dynamic wave environmental conditions, and vessel-ocean parametrizations, while advection by external currents is not considered. The emphasis is on predicting the time-optimal ship headings and Speeds Through Water constrained by dynamic ocean wave fields. VISIR upgrades regarding angular resolution, time-interpolation, and static navigational safety constraints are introduced. The deviations of the graph-search results relative to the solution of the exact differential equations in both the path duration and length are assessed. They are found to be of the order of the discretization errors, with VISIR’s solution converging to that of the differential equation for sufficient resolution.
Kulkarni, C.S. and P.F.J. Lermusiaux, 2020. Three-Dimensional Time-Optimal Path Planning in the Ocean, Ocean Modelling, 152, 101644. doi:10.1016/j.ocemod.2020.101644
Autonomous underwater vehicles (AUVs) operate in the three-dimensional and time-dependent marine environment with strong and dynamic currents. Our goal is to predict the time history of the optimal three-dimensional headings of these vehicles such that they reach the given destination location in the least amount of time, starting from a known initial position. We employ the exact differential equations for time-optimal path planning and develop theory and numerical schemes to accurately predict three-dimensional optimal paths for several classes of marine vehicles, respecting their specific propulsion constraints. We further show that the three-dimensional path planning problem can be reduced to a two-dimensional one if the motion of the vehicle is partially known, e.g. if the vertical component of the motion is forced. This reduces the computational cost. We then apply the developed theory in three-dimensional analytically known flow fields to verify the schemes, benchmark the accuracy, and demonstrate capabilities. Finally, we showcase time-optimal path planning in realistic data-assimilative ocean simulations for the Middle Atlantic Bight region, integrating the primitive-equation of the Multidisciplinary Simulation Estimation and Assimilation System (MSEAS) with the three-dimensional path planning equations for three common marine vehicles, namely propelled AUVs (with unrestricted motion), floats (that only propel vertically), and gliders (that often perform sinusoidal yo-yo motions in vertical planes). These results highlight the effects of dynamic three-dimensional multiscale ocean currents on the optimal paths, including the Gulf Stream, shelfbreak front jet, upper-layer jets, eddies, and wind-driven and tidal currents. They also showcase the need to utilize data-assimilative ocean forecasts for planning efficient autonomous missions, from optimal deployment and pick-up, to monitoring and adaptive data collection.
Subramani, D.N. and P.F.J. Lermusiaux, 2019. Risk-Optimal Path Planning in Stochastic Dynamic Environments. Computer Methods in Applied Mechanics and Engineering, 353, 391–415. doi:10.1016/j.cma.2019.04.033
We combine decision theory with fundamental stochastic time-optimal path planning to develop partial-differential-equations-based schemes for risk-optimal path planning in uncertain, strong and dynamic flows. The path planning proceeds in three steps: (i) predict the probability distribution of environmental flows, (ii) compute the distribution of exact time-optimal paths for the above flow distribution by solving stochastic dynamically orthogonal level set equations, and (iii) compute the risk of being suboptimal given the uncertain time-optimal path predictions and determine the plan that minimizes the risk. We showcase our theory and schemes by planning risk-optimal paths of unmanned and/or autonomous vehicles in illustrative idealized canonical flow scenarios commonly encountered in the coastal oceans and urban environments. The step-by-step procedure for computing the risk-optimal paths is presented and the key properties of the risk-optimal paths are analyzed.
Moore, A.M., M. Martin, S. Akella, H. Arango, M. Balmaseda, L. Bertino, S. Ciavatta, B. Cornuelle, J. Cummings, S. Frolov, P. Lermusiaux, P. Oddo, P.R. Oke, A. Storto, A. Teruzzi, A. Vidard, and A.T. Weaver, 2019. Synthesis of Ocean Observations using Data Assimilation for Operational, Real-time and Reanalysis Systems: A More Complete Picture of the State of the Ocean. Frontiers in Marine Science 6(90), 1–6. doi:10.3389/fmars.2019.00090
Gil, Y., S.A. Pierce, H. Babaie, A. Banerjee, K. Borne, G. Bust, M. Cheatham, I. Ebert-Uphoff, C. Gomes, M. Hill, J. Horel, L. Hsu, J. Kinter, C. Knoblock, D. Krum, V. Kumar, P.F.J. Lermusiaux, Y. Liu, C. North, V. Pankratius, S. Peters, B. Plale, A. Pope, S. Ravela, J. Restrepo, A. Ridley, H. Samet, and S. Shekhar, 2019. Intelligent Systems for Geosciences: An Essential Research Agenda. Communications of the ACM, 62(1), 76–84. doi:10.1145/3192335
Many aspects of geosciences pose novel problems for intelligent systems research. Geoscience data is challenging because it tends to be uncertain, intermittent, sparse, multiresolution, and multiscale. Geosciences processes and objects often have amorphous spatiotemporal boundaries. The lack of ground truth makes model evaluation, testing, and comparison difficult. Overcoming these challenges requires breakthroughs that would significantly transform intelligent systems, while greatly benefitting the geosciences in turn. Although there have been significant and beneficial interactions between the intelligent systems and geosciences communities, the potential for synergistic research in intelligent systems for geosciences is largely untapped. A recently launched Research Coordination Network on Intelligent Systems for Geosciences followed a workshop at the National Science Foundation on this topic. This expanding network builds on the momentum of the NSF EarthCube initiative for geosciences, and is driven by practical problems in Earth, ocean, atmospheric, polar, and geospace sciences. Based on discussions and activities within this network, this article presents a research agenda for intelligent systems inspired by geosciences challenges.
Lermusiaux, P.F.J., D.N. Subramani, J. Lin, C.S. Kulkarni, A. Gupta, A. Dutt, T. Lolla, P.J. Haley Jr., W.H. Ali, C. Mirabito, and S. Jana, 2017. A Future for Intelligent Autonomous Ocean Observing Systems. The Sea. Volume 17, The Science of Ocean Prediction, Part 2, J. Marine Res. 75(6), pp. 765–813. https://doi.org/10.1357/002224017823524035
Centurioni, L.R., V. Hormann, L. D. Talley, I. Arzeno, L. Beal, M. Caruso, P. Conry, R. Echols, H. J. S. Fernando, S. N. Giddings, A. Gordon, H. Graber, R. Harcourt, S. R. Jayne, T. G. Jensen, C. M. Lee, P. F. J. Lermusiaux, P. L’Hegaret, A. J. Lucas, A. Mahadevan, J. L. McClean, G. Pawlak, L. Rainville, S. Riser, H. Seo, A. Y. Shcherbina, E. Skyllingstad, J. Sprintall, B. Subrahmanyam, E. Terrill, R. E. Todd, C. Trott, H. N. Ulloa, and H. Wang, 2017. Northern Arabian Sea Circulation-Autonomous Research (NASCar): A Research Initiative Based on Autonomous Sensors. Oceanography 30(2):74–87, https://doi.org/10.5670/oceanog.2017.224.
Lermusiaux, P.F.J., P.J. Haley Jr., S. Jana, A. Gupta, C.S. Kulkarni, C. Mirabito, W.H. Ali, D.N. Subramani, A. Dutt, J. Lin, A. Y. Shcherbina, C. M. Lee, and A. Gangopadhyay, 2017. Optimal Planning and Sampling Predictions for Autonomous and Lagrangian Platforms and Sensors in the Northern Arabian Sea. Oceanography 30(2):172–185, https://doi.org/10.5670/oceanog.2017.242.
Lermusiaux P.F.J, T. Lolla, P.J. Haley. Jr., K. Yigit, M.P. Ueckermann, T. Sondergaard and W.G. Leslie, 2016. Science of Autonomy: Time-Optimal Path Planning and Adaptive Sampling for Swarms of Ocean Vehicles. Chapter 21, Springer Handbook of Ocean Engineering: Autonomous Ocean Vehicles, Subsystems and Control, Tom Curtin (Ed.), pp. 481-498. doi:10.1007/978-3-319-16649-0_21.
Lolla, T., P.J. Haley. Jr. and P.F.J. Lermusiaux, 2015. Path Planning in Multi-scale Ocean Flows: Coordination and Dynamic Obstacles. Ocean Modelling, 94, 46-66. DOI: 10.1016/j.ocemod.2015.07.013.
As the concurrent use of multiple autonomous vehicles in ocean missions grows, systematic control for their coordinated operation is becoming a necessity. Many ocean vehicles, especially those used in longer–range missions, possess limited operating speeds and are thus sensitive to ocean currents. Yet, the effect of currents on their trajectories is ignored by many coordination techniques. To address this issue, we first derive a rigorous level-set methodology for distance–based coordination of vehicles operating in minimum time within strong and dynamic ocean currents. The new methodology integrates ocean modeling, time-optimal level-sets and optimization schemes to predict the ocean currents, the short-term reachability sets, and the optimal headings for the desired coordination. Schemes are developed for dynamic formation control, where multiple vehicles achieve and maintain a given geometric pattern as they carry out their missions. Secondly, we obtain an efficient, non–intrusive technique for level-set-based time–optimal path planning in the presence of moving obstacles. The results are time-optimal path forecasts that rigorously avoid moving obstacles and sustain the desired coordination. They are exemplified and investigated for a variety of simulated ocean flows. A wind–driven double–gyre flow is used to study time-optimal dynamic formation control. Currents exiting an idealized strait or estuary are employed to explore dynamic obstacle avoidance. Finally, results are analyzed for the complex geometry and multi–scale ocean flows of the Philippine Archipelago.
Wang, D., P.F.J. Lermusiaux, P.J. Haley, D. Eickstedt, W.G. Leslie and H. Schmidt, 2009. Acoustically Focused Adaptive Sampling and On-board Routing for Marine Rapid Environmental Assessment. Special issue of Journal of Marine Systems on "Coastal processes: challenges for monitoring and prediction", Drs. J.W. Book, Prof. M. Orlic and Michel Rixen (Guest Eds), 78, S393-S407, doi: 10.1016/j.jmarsys.2009.01.037.
Yilmaz, N.K., C. Evangelinos, N.M. Patrikalakis, P.F.J. Lermusiaux, P.J. Haley, W.G. Leslie, A.R. Robinson, D. Wang and H. Schmidt, 2006a. Path Planning Methods for Adaptive Sampling of Environmental and Acoustical Ocean Fields, Oceans 2006, 6pp, Boston, MA, 18-21 Sept. 2006, doi: 10.1109/OCEANS.2006.306841.